Диагонали трапеции ABCD c основанием AB и CD пересекаются в точке O. Найдите AO, если AB=9,6 дм, DC=24 см, AC=15 см

Диагонали трапеции ABCD c основанием AB и CD пересекаются в точке O. Найдите AO, если AB=9,6 дм, DC=24 см, AC=15 см.

  • 1. Треугольники DOC и АОВ подобны по первому признаку подобия треугольников: два угла одного треугольника соответственно равны двум углам другого. В нашем случае углы DOC и АОВ равны как вертикальные углы, а углы DCA и САВ равны как накрест лежащие углы при пересечении параллельных прямых DC и АВ секущей АС.2. Выразим ОС как 15-АО3. Поскольку треугольники подобны, можно записать:АО / ОС = АВ / DC, АО = ОС*АВ / DCAO = (15-AO)*AB / DCAO = (15-AO)*96 / 2424AO = (15-AO)*9624AO = 1440 — 96AO120AO = 1440

    AO = 12 см