В основании пирамиды лежит правильный треугольник. Одна из граней пирамиды перпендикулярна к плоскости основания, а две остальные наклонены к ней под углом 60 градусов. Определить объем пирамиды, если высота = 12см.
- Боковая грань перпендикулярная основанию — равнобедренный треугольник с высотой Н = 12 см — высота пирамиды и разбивает грань на два прямоугольных треугольника с катетом Н = 12 см и острым углом 60
В прямоугольном треугольнике с катетом 12 см и противолежащим углом
tg 60 =a =
a = = 4√3 — половина стороны основания равностороннего треугольника
Площадь правильного треугольника (основания) со стороной 2а = 2 * 4√3 = 8 * 4√3 и высотой
h = = √144 = 12S = * 8√3 * 12 = 48√3 см²
Объем пирамиды с высотой H = 12 см и площадью основания S = 48√3 см²
V = S * H = 48√3 * 12 = 576√3 (см³)