решите контрольную с объяснением.
2 вариант
1. Дано: ВD = 3,1см, ВЕ = 4,2см,
ВА = 9,3см, ВС = 12,6см.
Доказать: DЕ || АС.
Найти: а) DЕ : АС; б) РАВС : РDВЕ; в) SDВЕ : SАВС.
2. Диагонали ромба АВСD пересекаются в точке О.
На стороне АВ взята точка К так, что ОК_|_АВ,
АК = 2см, ВК = 8см. Найдите диагонали ромба.
3. АВСD – выпуклый четырехугольник, АВ = 6см, ВС = 9см, СD = 10см,
DА = 24см, АС = 15см. Докажите, что АВСD – трапеция.
4*. В равнобедренном треугольнике АВС АВ = ВС = 40см, АС = 20см. На
стороне ВС отмечена точка Н так, что ВН : НС = 3 : 1. Найдите АН.
- 2 задача Ромб ABCD, точка пересечения диагоналей О, К — точка на стороне АВ.
АК=2
ВК=8
1- рассмотрим прямоугольный треугольник AOB. У него АВ=10см (т.к. АК+ВК=2+8=10). А катеты АО и ВО примем АО=х, ВО= у
2- из теоремы пифагора (квадрат гипотенузы (АВ^2) равен сумме квадратов катетов (АО^2+ВО^2)) ( X)^2 означает X в квадрате
т.е. АВ^2=AO^2+BO^2. подставим нашу замену получим 10^2=x^2+y^2, 100=x^2+y^2
3- рассмотрим прямоугольный треугольник AOK. Его стороны это АК=2, ОК и АО=x
в нем тоже по теореме пифагора получаем: AO^2=AK^2+OK^2, подставим значения получим x^2 = 2^2 + OK^2 x^2 = 4 + OK^2
4- рассмотрим прямоугольный треугольник BOK. Его стороны это BК=8, ОК и BО=y
в нем тоже по теореме пифагора получаем: BO^2=BK^2+OK^2, подставим значения получим y^2 = 8^2 + OK^2 y^2 =64 + OK^2Рассмотрим уравнения из пункта 3 и 4
x^2 = 4 + OK^2
y^2 =64 + OK^2
Выразим из каждого OK^2, получим
OK^2=x^2-4
OK^2=y^2-64
получаем
x^2-4=y^2-64
x^2=y^2-60
Решим теперь систему уравнений
x^2=y^2-60
100=x^2+y^2 (уравнение из пункта 2)
Подставим полученное x^2 в уравнение из пункта 1, получим систему
x^2=y^2-60
100=y^2-60+y^2x^2=y^2-60
2*y^2=160x^2=y^2-60
y^2=80
Теперь подставим y^2=80 в первое уравнение системы, получим системуx^2=80-60
y^2=80x^2=20
y^2=80
__
x=2 V 5 (два корня из пяти)
__
y=4 V 5 (четыре корня из пяти)Ответ: __ __ __ __
Диагонали ромба это АС=2*x = 2*2 V 5 = 4V 5 и BD=2*y= 2*4 V 5 = 8 V 5